Rabu, 02 Agustus 2023

OPERASI BILANGAN BULAT ( PENJUMLAHAN DAN PENGURANGAN)

   Hari/ Tanggal : Rabu - Jumat , 2 - 4 Agustus 2023

 Kelas              : 7A - 7D
 Materi            :  Bilangan bulat 

CAPAIAN PEMBELAJARAN

Peserta didik dapat membaca, menulis, dan membandingkan bilangan bulat, bilangan rasional dan irasional, bilangan desimal, bilangan berpangkat bulat dan akar, bilangan dalam notasi ilmiah. Mereka dapat menerapkan operasi aritmetika pada bilangan real, dan memberikan estimasi/perkiraan dalam menyelesaikan masalah (termasuk berkaitan dengan literasi finansial). Peserta didik dapat menggunakan faktorisasi prima dan pengertian rasio (skala, proporsi, dan laju perubahan) dalam penyelesaian masalah.

Tujuan Pembelajaran :
Setelah mengukuti kegiatan pembelajaran menggunakan model pembelajaran discovery Learning, dengan metode literasi, eksperimen, praktikum, dan presentasi dengan menumbuhkan sikap
 1 .  Beriman dan bertakwa kepada Tuhan yang maha Esa

2.      Bergotong royong

3.      Berkebinekaan global

4.      Mandiri

5.     Bernalar Kritis, dan Kreatif

Maka peserta didik Diharapkan :
  • Mampu Membandingkan dan mengurutkan bilangan bulat dan meletakkan pada garis bilangan
  • Mampu Mengenal dan menggunakan hubungan antara bilangan dan kebalikannya (invers penjumlahan) untuk menyelesaikan masalah

Assalamualaikum anak- anak yang sholeh sholehah....
Apa kabarnya hari ini ?
Semoga kita semua dalam lindungan Allah SWT Aamiin.....
Dan jangan lupa tetap selalu menjaga kesehatan  nya ya nak.
Baiklah sebelum kita melaksanakan pembelajaran di pagi ini, alangkah baiknya kita awali dengan melaksanakan sholat dhuha dan murojaahnya terlebih dahulu ya nak, dan tak lupa setelah itu pembacaan asmaul husna dan doa belajar ya supaya ilmu yang dipelajari hari ini akan bermanfaat, mudah diterima dan akan berkah ilmunya 
Baiklah untuk pertemuan kali ini kita akan memasuki materi 

Operasi Hitung Bilangan Bulat
Beberapa operasi hitung sederhana dalam bilangan bulat antara lain penjumlahan, pengurangan, perkalian, dan pembagian.

Operasi Penjumlahan
Operasi penjumlahan merupakan operasi yang melibatkan tanda “ + “. Dalam garis bilangan, suatu bilangan yang dijumlahkan dengan suatu bilangan positif akan bergerak ke kanan (semakin besar). Berikut akan dijelaskan sifat-sifat dalam operasi penjumlahan.

Sifat Komutatif

Sifat komutatif dapat disebut sebagai sifat pertukaran. Secara umum sifat komutatif yaitu a + b = b + a. Contohnya:

5 + 8 = 8 + 5 = 13

Sifat Asosiatif

Sifat asosiatif disebut juga dengan sifat pengelompokan. Secara umum sifat komutatif dituliskan dengan (a + b) + c = a + (b + c). Contohnya

(4 + 7) + 2 = 4 + (7 + 2) = 13

Sifat identitas terhadap penjumlahan

Unsur identitas terhadap operasi penjumlahan adalah bilangan 0. Mengapa 0 dikatakan sebagai unsur identitas terhadap penjumlahan? Karena jika kita menjumlahkan suatu bilangan dengan 0, hasil operasi penjumlahan akan tetap. Secara umum dituliskan dengan 0 + a = a + 0. Contohnya:

8 + 0 = 0 + 8 = 8

Unsur invers terhadap penjumlahan

Invers (lawan) dari a adalah –a.

Invers (lawan) dari –a adalah a.

Secara umum sifat invers ini dituliskan dengan a + (-a) = 0

Sifat tertutup

Penjumlahan berlaku sifat tertutup artinya penjumlahan bilangan bulat akan menghasilkan bilangan bulat juga. Jika a dan b adalah bilangan maka a + b = c dengan c merupakan bilangan bulat. Contoh:

3 + 8 = 11.  3, 8, 11 merupakan bilangan bulat.

Operasi Pengurangan
Operasi pengurangan merupakan operasi yang melibatkan tanda “ – “. Dalam garis bilangan, suatu bilangan yang dikurangi dengan suatu bilangan positif akan bergerak ke kiri (semakin kecil).

Berikut akan dijelaskan sifat-sifat dalam operasi pengurangan. Untuk suatu bilangan bulat berlaku:

a – b = a + (-b)

a – (-b) = a + b

contoh:

3 – 1 = 3 + (-1) = 2

4 – (-2) = 4 + 2 = 6

Tidak berlaku sifat komutatif dan assosiatif

a – b ≠ b – a

(a – b) – c ≠ a – (b – c)

Contoh:

4 – 2 ≠ 2 – 4

(6 – 2) – 1 ≠ 6 – (2 – 1)

Pengurangan yang melibatkan bilangan 0

a – 0 = a  dan 0 – a = -a

Contoh:

4 – 0 = 4 dan 0 – 4 = -4

Bersifat tertutup

Pengurangan yang melibatkan dua bilangan bulat, hasil operasinya juga merupakan bilangan bulat. Jika a dan b merupakan bilangan bulat, maka a – b = c dengan c merupakan bilangan bulat.

Penjumlahan dan Pengurangan Bilangan Bulat dengan Garis Bilangan
Beberapa aturan yang disepakati dalam penjumlahan atau pengurangan bilangan bulat dengan garis bilangan:


Bilangan bulat positif menggunakan tanda panah ke kanan
Bilangan bulat negatif menggunakan tanda panah ke kiri
Penjumlahan menggunakan tanda panah ke kanan
Pengurangan menggunakna tanda panah ke kiri

Contoh 1
7 + (-5) = 2



Contoh 2
-8 + 10 + (-7) = -5



LATIHAN

1. Ubahlah kalimat matematika berikut ke dalam garis bilangan!
a) -5 + 12 = 7
b) 10 + (-8) = 2
c) 8 – (-7) = 15
d) -11 – (-8) = -3
e) -2 + (-8) – (-7) = 3




Tidak ada komentar:

Posting Komentar