Rabu, 18 September 2024

MELENGKAPI KUADRAT SEMPURNA

  MATA PELAJARAN              : MATEMATIKA

  KELAS                                    :  IX A

  MATERI                                  : PERSAMAAN KUADRAT

  PERTEMUAN   KE                :  2 dari 5

  GURU PENGAMPU               :  SARI BUDI UTAMI, S.Pd.

 

 3.3 Menganalisis sifat-sifat fungsi kuadrat ditinjau dari koefisien dan determinannya

4.1 Menyelesaikan permasalahan nyata yang berkaitan dengan persamaan linear dua variabel, sistem persamaan linear dua variabel, dan atau fungsi kuadrat

Tujuan Pembelajaran

Melalui pendekatan saintifik dengan menggunakan model pembelajaran discovery Learning, dengan metode literasi, dan presentasi  peserta didik  diharapkan

  •  Mencermati  permasalahan sehari-hari yang berkaitan dengan persamaan kuadrat
  • Menganalisis faktor-faktor bentuk aljabar dalam persamaan kuadrat, penyelesaian (akar-akar) dari persamaan kuadrat, cara menentukan akar-akar persamaan kuadrat dengan pemfaktoran


Assalamualaikum anak- anak yang sholeh sholehah....
Apa kabarnya hari ini ?
Semoga kita semua dalam lindungan Allah SWT Aamiin.....
Dan jangan lupa tetap selalu menjaga kesehatan  nya ya nak.
Baiklah sebelum kita melaksanakan pembelajaran di pagi ini, alangkah baiknya kita awali dengan melaksanakan sholat dhuha dan murojaahnya terlebih dahulu ya nak, dan tak lupa setelah itu pembacaan asmaul husna dan doa belajar ya supaya ilmu yang dipelajari hari ini akan bermanfaat, mudah diterima dan akan berkah ilmunya 

Baiklah sebelum kita memasuki materi yang baru, masih ingatkah anak anakku dengan materi minggu kemarin...?  Iya betul...materi minggu kemarin adalah tentang persamaan kuadrat .

Untuk pertemuan kali ini kita akan memasuki materi  penyelesain persamaan kuadrat dengan melengkapi kuadrat sempurna



Kesimpulan
Untuk menyelesaikan persamaan kuadrat dengan melengkapi kuadrat sempuna bisa menggunakan rumus 

(x + p)2 = x+ 2px + p2

Dari bentuk tersebut, kamu bisa ubah menjadi bentuk persamaan dalam (x + p)= q

Penyelesaian:

(x + p)= q

x + p = ± √q

x = −p ± √q


Reverensi:

Ruang guru

Juragan les


1 komentar:

  1. assalamu'alaikum wr.wb
    queensha zhafirah mulia a.
    9b
    hadir
    trmksh atas materinya buu

    BalasHapus