Kamis, 21 November 2024

PERSAMAAN GARIS LURUS

  MATA PELAJARAN            : MATEMATIKA

 FASE                                     :  D

MATERI POKOK                 : PERSAMAAN GARIS

PERTEMUAN                       : KE 4 DARI 4

GURU PENGAMPU             : SARI BUDI UTAMI, S.Pd


CAPAIAN PEMBELAJARAN

Di akhir fase D Peserta didik dapat memahami relasi dan fungsi (domain,kodomain, range) dan menyajikannya dalam bentukdiagram panah, tabel, himpunan pasangan berurutan,dan grafik. Mereka dapat membedakan beberapa fungsinonlinear dari fungsi linear secara grafik. 

Tujuan Pembelajaran :

Setelah mengukuti kegiatan pembelajaran menggunakan model pembelajaran discovery Learning, dengan metode literasi, eksperimen, praktikum, dan presentasi dengan menumbuhkan sikap

 1 .  Beriman dan bertakwa kepada Tuhan yang maha Esa

2.      Bergotong royong

3.      Berkebinekaan global

Maka peserta didik Diharapkan dapat :

  1.    Memahami cara membuat tabel persamaan garis lurus
  2.    Menentukan titik potong terhadap sumbu x dan sumbu y
  3.    Memahami cara membuat pasangan berurutan
  4.    Menggambar Persamaan Garis Lurus

Assalamualaikum anak- anak yang sholeh sholehah....

Apa kabarnya hari ini ?

Semoga kita semua dalam lindungan Allah SWT Aamiin.....

Dan jangan lupa tetap selalu menjaga kesehatan  nya ya nak.

Baiklah sebelum kita melaksanakan pembelajaran di pagi ini, alangkah baiknya kita awali dengan melaksanakan sholat dhuha dan murojaahnya terlebih dahulu ya nak, dan tak lupa setelah itu pembacaan asmaul husna dan doa belajar ya supaya ilmu yang dipelajari hari ini akan bermanfaat, mudah diterima dan akan berkah ilmunya 


Sebelum kita membahas materi minggu ini masih ingatkah kalian dengan materi minggu kemarin.......?Iya materi minggu kemarin yaitu tentang nilai fungsi. Sekilas kita ulang materi minggu lalu tentang nilai fungsi Pada fungsi g yang memetakan himpunan A ke himpunan B dinotasikan dengan g(x). Misal ada fungsi f yang memetakan A ke B dengan aturan f : x → 2x + 2. Dari notasi fungsi tersebut, x merupakan anggota domain. fungsi x → 2x + 2 berarit fungsi f memetakan x ke 2x+2. Jadi daerah bayangan x oleh fungsi f adalah 2x + 2. Sobat dapat menotasikannya dengan f(x) = 2x +2. Kesimpulan

Jika fungsi f : x → ax + b dengan x anggota domain f maka rumus fungsi f adalah f(x) = ax +b 

Baiklah pada pertemuan  ini, materi yang akan kita pelajari adalah tentang Persamaan garis lurus

A. Pengertian Pesamaan Garis Lurus
Persamaan garis lurus adalah suatu fungsi yang apabila digambarkan ke dalam bidang Cartesius akan berbentuk garis lurus. Garis lurus ini mempunyai nilai kemiringan suatu gris yang dinamakan gradien (m).
Bentuk umum :
y = mx + c
dimana:
m = gradien (kemiringan garis)
c = konstanta

B. Gradien Garis Lurus (m)
Gradien adalah nilai yang menyatakan kemiringan suatu garis yang dinyatakan dengan m.
Untuk mencari nilai gradien suatu garis dapat dilakukan dengan beberapa cara yaitu:
1. Garis melalui dua titik (x1, y1) dan (x2, y2)

contoh soal:
gradien garis lurus yang melalui titik (5,2) dan (-1,8) adalah....


contoh gradien garis lurus

2. Garis melalui pusat koordinat 0 dan melalui titik (x1, y1)

contoh:
Gradien garis lurus melalui titik (0,0) dan (4,8) adalah....
Jawab:
m = y1/x1 → x1= 4 ; y1= 8
= 8/4 = 2

3. Garis memotong kedua sumbu
a. Garis miring ke kanan

b. Garis miring ke kiri
4. Persamaan garis ax + by + c = 0 maka

contoh:
Gradien garis dengan persamaan 2x – y - 5 = 0 adalah...
Jawab:
2x – y - 5 = 0  ax + by + c = 0, maka a = 2 ; b = -1 dan c = -5

5. Garis sejajar sumbu x
contoh:
Gradien garis y = 4 adalah....
jawab:
y = mx + c  y = 0x + 4
dijadikan ke bentuk persamaan ax + by + c = 0 menjadi
0x – y + 4 = 0  a = 0 ; b = -1


6. Garis sejajar sumbu y

contoh:
gradien garis x = 2 adalah....
Jawab:
y = mx + c → mx = y – c → x = 0y + 2
dijadikan ke bentuk persamaan ax + by + c = 0 menjadi
x – 0y - 2 = 0 → a = 1; b = 0
C. Menentukan Persamaan Garis Lurus
1. Persamaan garis yang melalui titik O (0,0) dan bergradien m.
2. Persamaan garis yang melalui titik (0,c) dan bergradien m
Persamaan garisnya:
3. Persamaan garis yang melalui titik (x1, y1) dan bergradien m
contoh:
persamaan garis lurus melalui titik (5,10) dan bergradien 2 adalah...
Jawab:
Persamaan garisnya:
y – y1 = m(x - x1)  m = 2 ; x1= 5 ; y1 = 10
y – 10 = 2 (x - 5)
y – 10 = 2x – 10
y = 2x – 10 + 10
y = 2x

4. Persamaan garis yang melalui titik (x1, y1) dan (x2, y2)
Contoh
Persamaan garis lurus melalui titik (2,4) dan (-3,-2) adalah....
Jawab:
persamaan garisnya:
2(y+3) = x – 2
2y + 6 = x – 2
2y = x – 2 – 6
2y = x – 8


LATIHAN SOAL

1. Tentukan gradien dari garis-garis yang disebutkan di bawah ini!
a) y = 3x + 1
b) y = -2x + 5
c) y – 4x = 5
d) 3x -2y = 12
e) 4x + 2y – 3 = 0

2. Tentukan persamaan garis yang sejajar dengan garis y = 3x + 5 dan melalui titik (2, 1)!

KESIMPULAN

Demikinlah materi kita tentangbpersamaan garis lurus, yaitu Persamaan garis lurus adalah suatu fungsi yang apabila digambarkan ke dalam bidang Cartesius akan berbentuk garis lurus. Garis lurus ini mempunyai nilai kemiringan suatu gris yang dinamakan gradien (m).
Bentuk umum :
y = mx + c
dimana:
m = gradien (kemiringan garis)
c = konstanta


REVERENSI

2 komentar:

  1. assalamu'alaikum wr.wb
    queensha zhafirah mulia a.
    9b
    hadir
    trmksh atas materinya buu

    BalasHapus
  2. assalamu'alaikum wr.wb
    queensha zhafirah mulia a.
    9b
    hadir
    trmksh atas materinya buu

    BalasHapus